Pathogenesis of the human opportunistic pathogen Pseudomonas aeruginosa PA14 in Arabidopsis.
نویسندگان
چکیده
The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 is a multihost pathogen that can infect Arabidopsis. We found that PA14 pathogenesis in Arabidopsis involves the following steps: attachment to the leaf surface, congregation of bacteria at and invasion through stomata or wounds, colonization of intercellular spaces, and concomitant disruption of plant cell wall and membrane structures, basipetal movement along the vascular parenchyma, and maceration and rotting of the petiole and central bud. Distinctive features of P. aeruginosa pathogenesis are that the surface of mesophyll cell walls adopt an unusual convoluted or undulated appearance, that PA14 cells orient themselves perpendicularly to the outer surface of mesophyll cell walls, and that PA14 cells make circular perforations, approximately equal to the diameter of P. aeruginosa, in mesophyll cell walls. Taken together, our data show that P. aeruginosa strain PA14 is a facultative pathogen of Arabidopsis that is capable of causing local and systemic infection, which can result in the death of the infected plant.
منابع مشابه
Trehalose Biosynthesis Promotes Pseudomonas aeruginosa Pathogenicity in Plants
Pseudomonas aeruginosa strain PA14 is a multi-host pathogen that infects plants, nematodes, insects, and vertebrates. Many PA14 factors are required for virulence in more than one of these hosts. Noting that plants have a fundamentally different cellular architecture from animals, we sought to identify PA14 factors that are specifically required for plant pathogenesis. We show that synthesis by...
متن کاملA High Throughput Amenable Arabidopsis-P. aeruginosa System Reveals a Rewired Regulatory Module and the Utility to Identify Potent Anti-Infectives
We previously demonstrated that in a metasystem consisting of Arabidopsis seedlings growing in liquid medium (in 96 well plates) even microbes considered to be innocuous such as laboratory strains of E. coli and B. subtilis can cause potent damage to the host. We further posited that such environment-induced adaptations are brought about by 'system status changes' (rewiring of pre-existing cell...
متن کاملKilling of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis.
We show that a single clinical isolate of the human opportunistic pathogen Pseudomonas aeruginosa (strain PA14), which previously was shown to be pathogenic in mice and plants, also kills Caenorhabditis elegans. The rate of PA14-mediated killing of C. elegans depends on the composition of the agar medium on which PA14 is grown. When PA14 is grown on minimal medium, killing occurs over the cours...
متن کاملMolecular Mechanisms of Bacterial Virulence Elucidated Using a Pseudomonas aeruginosa– Caenorhabditis elegans Pathogenesis Model
The human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans. Using systematic mutagenesis of PA14 to identify mutants that fail to kill C. elegans and a C. elegans mutant that lacks P-glycoproteins, we identified phenazines, secreted P. aeruginosa pigments, as one of the mediators of killing. Analysis of C. elegans mutants with altered responses to oxidative...
متن کاملPseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors.
We reported recently that the human opportunistic pathogen Pseudomonas aeruginosa strain PA14 kills Caenorhabditis elegans and that many P. aeruginosa virulence factors (genes) required for maximum virulence in mouse pathogenicity are also required for maximum killing of C. elegans. Here we report that among eight P. aeruginosa PA14 TnphoA mutants isolated that exhibited reduced killing of C. e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 124 4 شماره
صفحات -
تاریخ انتشار 2000